Use of the neighboring orbital model for analysis of electronic coupling in Class III intervalence compounds

نویسندگان

  • Stephen F. Nelsen
  • Michael N. Weaver
  • Yun Luo
  • Jenny V. Lockard
  • Jeffrey I. Zink
چکیده

Symmetrical charge-delocalized intervalence radical ions should not be described by the traditional two-state model that has been so successful for their localized counterparts. If they lack direct overlap between their charge-bearing units (M), their diabatic orbitals have an equal energy pair of symmetrized M-centered combination orbitals that are symmetric (S) or antisymmetric (A) with respect to a symmetry element at the center of the molecule. TheM combination orbitals will mix separately with bridge orbitals of the same symmetry. We call the simplest useful model for this situation the neighboring orbital model, which uses the S and A bridge orbitals of high overlap that lie closest in energy to the M orbital pair, resulting in two two-state models that have a common energy for one pair. This model is developed quantitatively, and examples having 1, 3, 5, and 7 electrons in the neighboring orbitals are illustrated. 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical spectra of delocalized dinitroaromatic radical anions revisited.

The optical spectra of nine dinitroaromatic radical anions (1,2- and 1,4-dinitrobenzene, 1,5- and 2,6-dinitro naphthalene, 4,4'-dinitrobiphenyl, 2,7-dinitro-9,9-dimethylfluorene, 2,6-dinitroanthracene, and 2,7- and 1,8-dinitrobiphenylene) in dimethylformamide are reported and analyzed. All have delocalized charge distribution, as demonstrated by the vibrational fine structure that is observed i...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

Probing the localized-to-delocalized transition.

Detailed understanding of the transition between localized and delocalized behaviour in mixed valence compounds has been elusive as evidenced by many interpretations of the Creutz-Taube ion, [(NH3)5Ru(pz)Ru(NH3)5]5+. In a review in 2001, experimental protocols and a systematic model to probe this region were proposed and applied to examples in the literature. The model included: (i) multiple or...

متن کامل

Tetra-rhenium molecular rectangles as organizational motifs for the investigation of ligand-centered mixed valency: three examples of full delocalization.

Molecular rectangles having the form ([Re(CO)3]2(X)2)(2)-mu,mu'-(LL)2, where X is either a bridging alkoxide or phenylthiolate group and LL is 4,4'-bipyridine or pyrazine, are characterized by cofacial LL pairs that are in van der Waals contact across the "long" side of the rectangle. Cyclic voltammetry shows that the redox-accessible bridging ligands, LL, are reduced in sequential, one-electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006